
Terahertz Quantum-Staircase and Quantum-Parallel Laser Designs for GaAs/AIGaAs and SiGe/Si

Richard Soref

Air Force Research Laboratory

Quantum Staircase Laser

- *Highly simplified cascade
- *No injector sections
- *Identical quantum wells
- *Strain-balanced SiGe/Si
- *PIP and NIN laser designs

Quantum Parallel Laser

- *Simple flatband superlattice
- *Low bias voltage
- *"Super Superlattice" is the optimum design
- *PIPIP and NININ designs

maintaining the data needed, and c including suggestions for reducing	ompleting and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding ar	o average 1 hour per response, includion of information. Send comments a arters Services, Directorate for Informy other provision of law, no person	regarding this burden estimate of mation Operations and Reports	or any other aspect of th , 1215 Jefferson Davis l	is collection of information, Highway, Suite 1204, Arlington	
1. REPORT DATE JAN 2004	2 DEPORT TYPE			3. DATES COVERED 00-00-2004 to 00-00-2004		
4. TITLE AND SUBTITLE				5a. CONTRACT NUMBER		
Terahertz Quantum-Staircase and Quantum-Parallel Laser Designs for GaAs/AlGaAsand SiGe/Si				5b. GRANT NUMBER		
GaAs/AlGaAsailu SiGC/Si				5c. PROGRAM ELEMENT NUMBER		
6. AUTHOR(S)				5d. PROJECT NUMBER		
				5e. TASK NUMBER		
				5f. WORK UNIT NUMBER		
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Air Force Research Laboratory, Wright Patterson AFB, OH, 45433				8. PERFORMING ORGANIZATION REPORT NUMBER		
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)				10. SPONSOR/MONITOR'S ACRONYM(S)		
				11. SPONSOR/MONITOR'S REPORT NUMBER(S)		
12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution unlimited						
13. SUPPLEMENTARY NOTES Presented at the International Workshop on Quantum Cascade Lasers, Seville, Spain, Jan 4-8, 2004.						
14. ABSTRACT						
15. SUBJECT TERMS						
16. SECURITY CLASSIFIC	17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON			
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	Same as Report (SAR)	7	RESPUNSIBLE PERSON	

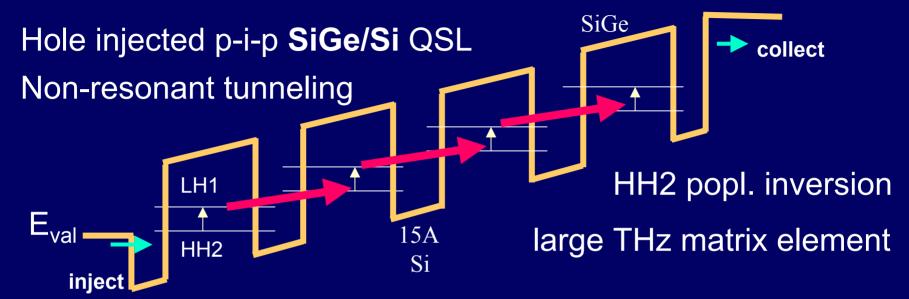
Report Documentation Page

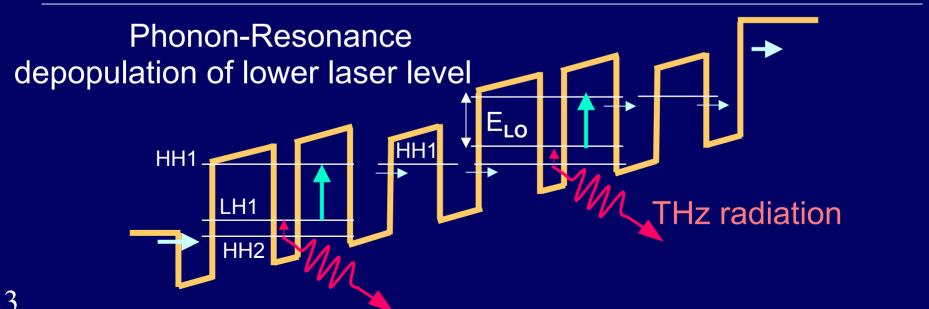
Form Approved OMB No. 0704-0188

Principles and Limitations of Electrically-Injected Unipolar QSLs and QPLs

Quantum Staircase Injectorless Approaches:

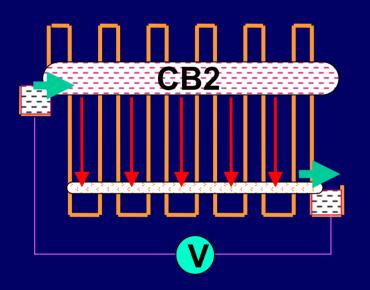
- 1. Non-resonant-tunn. diagonal transition scheme: 1 QW
- 2. Phonon-depopulated resonant tunneling scheme: 3 QW per period, vertical transition
- 3. 1 QW per period resonant scheme: vertical transition

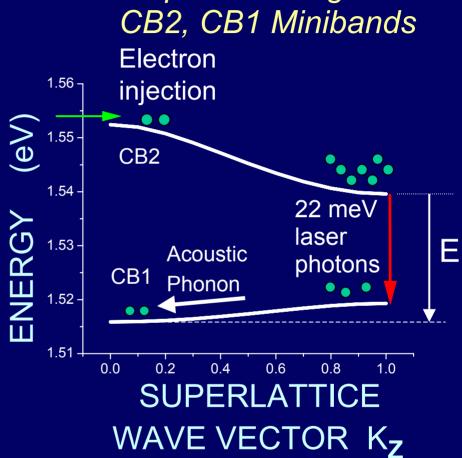

Limitations:


- At λ < 20 μ m, bias > 90 kV/cm
- 500 to 1000 periods are required.

Quantum Parallel Superlattice Approach:

- Inter-miniband lasing (4 levels in effect)
- Photon energy is less than LO phonon energy
- Appl bias bucks out built-in voltage from n/n⁺ contacts Limitations:
- Low gain at λ < 12 μm, SiGe
- 500 to 1000 periods are required.
- Must use T < 25 K in GaAs

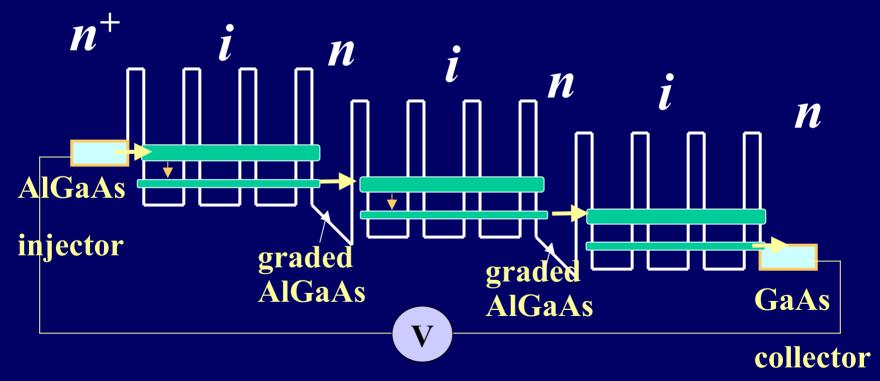

Hole Cascade via Inter-Well Diagonal Radiative Transition (designed in collaboration with University of Leeds team)



QPL: GaAs/Al_{0.15}Ga_{0.85}As 200Å/24Å Superlattice

Band Diagram In Real Space

n-Ga(0.7)Al(0.3) elec. injector n-GaAs collector GaAs quantum wells Ga(0.85)Al(0.15)As barriers



Dispersion Diagram:

E < 36 meV, LO phonon emission is suppressed.

QPL constructed of "stiched" parallel regions; the "super super lattice"

Resonant tunneling of electrons between flatband SLs is obtained by the **composition-gradient** in the n-doped AlGaAs transfer barriers

Ballistic transport in each superlattice

Ways to Accelerate Future Developments— Possible Collaborations, Leverage, Improvement of Approach

- Try the new QPL in III-Vs and IV-IVs
- Try the phonon-depop QSL in SiGe (64 meV, 300K lasing?)
- Try the new GaN/AlGaN QSL (90 meV phonondepop, CW at 300K?)
 G. Sun and R. Soref, APL manuscript

- New STTRs from AFOSR and ONR
- On-going STTRs
- European Union SiGe THz Project
- MURI from AFOSR and/or ONR
- Leeds EPSRC grant: ntype QCLs, and mid-IR QCLs

CONCLUSIONS...CHALLENGES...QUESTIONS Conclusions:

* new SiGe and GaAs THz laser designs: simpler alternatives to the cascade, CVD Challenges:

- * several microns of epitaxy required
- * non resonant staircase...as with Leeds
- * tunneling via graded barriers in SSL Questions:
- * domain formation? carrier cooling?
- * good mode overlap in SSL?
- * mode loss due to n-barriers in SSL?